1. Determine the constant c such that the given function is a valid joint PDF for...
2. Let the joint pdf of X and Y be given by f(xy)-cx if 0sysxsi Determine that value of c that makes f into a valid pdf. a. Find Pr(r ) b 2 C. Find Prl X d. Find the marginal pdf's of X and Y e. Find the conditional pdfs of 자리 and ri- f. Are X and Y independent? Give a reason for your answer g. Find E(X), E(Y), and E(X.Y) 2. Let the joint pdf of X...
Q2) (20 points) The joint pdf of a two continuous random variables is given as follows: < x < 2,0 < y<1 (cxy0 fxy(x, y) = } ( 0 otherwise 1) Find c. 2) Find the marginal PDFs of X and Y. Make sure to write the ranges. Are these random variables independent? 3) Find P(0 < X < 110 <Y < 1) 4) What is fxy(x\y). Make sure to write the range of X.
2. The joint pdf of random variables X and Y is given by f(x.y) k if 0 sysxs2 and f(x,y)-0 otherwise. a. Find the value of k b. Find the marginal pdfs of X and Y. Are X and Y independent? c. Find Covariance (X,Y) and Correlation(X,Y). Why cannot we say that X and Y have linear relation Yea X+ b, where a and b are real numbers?
Let the random variables X, Y with joint probability density function (pdf) fxy(z, y) = cry, where 0 < y < z < 2. (a) Find the value of c that makes fx.y (a, y) a valid pdf. (b) Calculate the marginal density functions for X and Y (c) Find the conditional density function of Y X (d) Calculate E(X) and EYIX) (e Show whether X. Y are independent or not.
The joint pdf of random variables X and Y is given by f(x.y)-k if 0 s y sx s 2 and f(x,y) =0 otherwise. a. Find the value of k b. Find the marginal pdfs of X and Y. Are X and Y independent? c. Find Covariance (X,Y) and Correlation(X,Y). Why cannot we say that X and Y have linear relation Y-a X+ b, where a and b are real numbers?
Suppose the joint pdf of random variables X and Y is f(x,y) = c/x, 0 < y < x < 1. a) Find constant c that makes f (x, y) a valid joint pdf. b) Find the marginal pdf of X and the marginal pdf of Y. Remember to provide the supports c) Are X and Y independent? Justify
1. The joint probability density function (pdf) of X and Y is given by fxy(x, y) = A (1 – xey, 0<x<1,0 < y < 0 (a) Find the constant A. (b) Find the marginal pdfs of X and Y. (c) Find E(X) and E(Y). (d) Find E(XY). 2. Let X denote the number of times (1, 2, or 3 times) a certain machine malfunctions on any given day. Let Y denote the number of times (1, 2, or 3...
The joint pdf fr (x)) of two random variables X and Y is given by fo (x,y)=cx2y for x +y s1. Determi use them to determine whether or not the two random variables are statistically independent. ne the constant c. Determine the marginal pdfs "Ax) and f, (y) and
The joint PDF of random variables X and Y is expressed as (a) Determine the constant c. (b) Determine the marginal density function for X. (c) Determine the marginal density function for Y. (d) Are X and Y statistically independent? (e) Determine the probability of P(X ≤ 0.5 | Y = 1). The joint PDF of random variables X and Y is expressed as certy, 05xs1 and 05ys2 fx.x(x, y) = 10. elsewhere. (a) Determine the constant c. (b) Determine...
Please show your work. Thanks in advance. 3. The joint pdf for random variables X and Y is given by 0 otherwise (a) Determine the value of c that makes this a valid joint pdf. (b) Determine P(X<3,Y< 2). (c) What is the marginal pdf of Y?